函数f(x)=4−x2f(x)=\sqrt{4 - x^2}f(x)=4−x2的定义域是(). (A)[−2,2][-2,2][−2,2] (B)(−2,2)(-2,2)(−2,2) (C)(−2,2](-2,2](−2,2] (D)[−2,2)[-2,2)[−2,2)
设f(x)f(x)f(x)在点x=1x = 1x=1处连续,且limx→1f(x)=2\lim\limits_{x \to 1}f(x)=2x→1limf(x)=2,则f(1)=f(1) =f(1)=(). (A)111 (B)222 (C)333 (D)−2-2−2
x=0x = 0x=0是函数f(x)=arctan1xf(x)=\arctan\dfrac{1}{x}f(x)=arctanx1的(). (A)连续点 (B)可去间断点 (C)跳跃间断点 (D)第二类间断点
f(x)=ln(x2+3)f(x)=\ln(x^2 + 3)f(x)=ln(x2+3),则f′(1)=f'(1) =f′(1)=(). (A)14\dfrac{1}{4}41 (B)−14-\dfrac{1}{4}−41 (C)12\dfrac{1}{2}21 (D)−12-\dfrac{1}{2}−21
若f(x)f(x)f(x)的一个原函数是lnx\ln xlnx,则f(x)=f(x) =f(x)=(). (A)1x\dfrac{1}{x}x1 (B)−1x2-\dfrac{1}{x^2}−x21 (C)lnx\ln xlnx (D)xlnxx\ln xxlnx
Copyright ©