曲线y=f(x)y = f(x)y=f(x)上任一点(x,y)(x,y)(x,y)处的切线斜率为12x\dfrac{1}{2}x21x,且曲线yyy通过点(2,2)(2,2)(2,2),则曲线方程为( ).
(A)y=14x2+3y=\dfrac{1}{4}x^2 + 3y=41x2+3
(B)y=12x2y=\dfrac{1}{2}x^2y=21x2
(C)y=12x2+3y=\dfrac{1}{2}x^2 + 3y=21x2+3
(D)y=14x2+1y=\dfrac{1}{4}x^2 + 1y=41x2+1
Copyright ©