设函数y=f(3x+2)y = f(3x + 2)y=f(3x+2)的定义域为[1,3][1,3][1,3],则函数f(x)f(x)f(x)的定义域为(). (A)[−13,13][-\dfrac{1}{3},\dfrac{1}{3}][−31,31] (B)[5,11][5,11][5,11] (C)(−13,13)(-\dfrac{1}{3},\dfrac{1}{3})(−31,31) (D)(5,11)(5,11)(5,11)
当x→0x→0x→0时,以下是等价无穷小的是(). (A)1−cosx1 - \cos x1−cosx与x22\dfrac{x^2}{2}2x2 (B)xxx与tanx\tan xtanx (C)x−sinxx - \sin xx−sinx与xxx (D)1−cosx1 - \cos x1−cosx与2x2x2x
设函数f(x)f(x)f(x)在点x=2x = 2x=2处连续,且limx→2f(x)x−2=4\lim\limits_{x \to 2} \dfrac{f(x)}{x - 2}=4x→2limx−2f(x)=4,则f(2)=f(2) =f(2)=(). (A)−4-4−4 (B)000 (C)14\dfrac{1}{4}41 (D)444
设y=arcsin(3x+1)y = \arcsin(3x + 1)y=arcsin(3x+1),则dy=dy =dy=(). (A)11−(3x+1)2dx\dfrac{1}{\sqrt{1-(3x + 1)^2}}dx1−(3x+1)21dx (B)−11−(3x+1)2dx-\dfrac{1}{\sqrt{1-(3x + 1)^2}}dx−1−(3x+1)21dx (C)31−(3x+1)2dx\dfrac{3}{\sqrt{1-(3x + 1)^2}}dx1−(3x+1)23dx (D)−31−(3x+1)2dx-\dfrac{3}{\sqrt{1-(3x + 1)^2}}dx−1−(3x+1)23dx
已知曲线y=2+x2y = 2 + x^2y=2+x2,则该曲线的拐点是(). (A)(0,2)(0,2)(0,2) (B)(1,3)(1,3)(1,3) (C)(0,0)(0,0)(0,0) (D)(−1,1)(-1,1)(−1,1)
Copyright ©