若f(x)f(x)f(x)的定义域为[0,1][0,1][0,1],则f(3x)f(3x)f(3x)的定义域是(). (A)[0,1][0,1][0,1] (B)[0,3][0,3][0,3] (C)[0,13][0,\dfrac{1}{3}][0,31] (D)(0,1)(0,1)(0,1)
已知函数f(x)=x8−x4f(x)=x^8 - x^4f(x)=x8−x4,则f(x)f(x)f(x)是(). (A)奇函数 (B)偶函数 (C)非奇非偶函数 (D)无法判断奇偶性
极限limx→0ex2−11−cosx=\lim\limits_{x \to 0} \dfrac{e^{x^2} - 1}{1 - \cos x} =x→0lim1−cosxex2−1=(). (A)∞\infty∞ (B)2 (C)0 (D)−2-2−2
已知函数f(x)=xf(x)=xf(x)=x,则f(1x)=f(\dfrac{1}{x}) =f(x1)=(). (A)xxx (B)x2x^2x2 (C)1x\dfrac{1}{x}x1 (D)1x2\dfrac{1}{x^2}x21
由参数方程{x=acosty=bsint\begin{cases}x = a \cos t \\ y = b \sin t\end{cases}{x=acosty=bsint确定的函数y=y(x)y = y(x)y=y(x)的导数dydx=\dfrac{dy}{dx} =dxdy=(). (A)batant\dfrac{b}{a} \tan tabtant (B)bacott\dfrac{b}{a} \cot tabcott (C)−batant-\dfrac{b}{a} \tan t−abtant (D)−bacott-\dfrac{b}{a} \cot t−abcott
Copyright ©