极限limx→01+3x−132x=\lim\limits_{x \to 0} \dfrac{\sqrt[3]{1 + 3x - 1}}{2x} =x→0lim2x31+3x−1=(). (A)12\dfrac{1}{2}21 (B)23\dfrac{2}{3}32 (C)0 (D)∞\infty∞
已知f(x)=x2f(x) = x^2f(x)=x2,g(x)=ln(x+1)g(x) = \ln(x + 1)g(x)=ln(x+1),则f[g(e−1)]=f[g(e - 1)] =f[g(e−1)]=(). (A)0 (B)1 (C)−1-1−1 (D)e
f(x)={2x+sinxxcosx,x>0sinxxcosx,x≤0f(x) = \begin{cases} \dfrac{2x + \sin x}{x \cos x}, & x > 0 \\ \dfrac{\sin x}{x \cos x}, & x \leq 0 \end{cases}f(x)=⎩⎨⎧xcosx2x+sinx,xcosxsinx,x>0x≤0,则x=0x = 0x=0是f(x)f(x)f(x)的_____间断点.() (A)无穷 (B)可去 (C)跳跃 (D)振荡
已知函数y=arctanx2y = \arctan x^2y=arctanx2,则y′=y' =y′=(). (A)−2x1+x4-\dfrac{2x}{1 + x^4}−1+x42x (B)2x1+x4\dfrac{2x}{1 + x^4}1+x42x (C)11+x4\dfrac{1}{1 + x^4}1+x41 (D)11+x2\dfrac{1}{1 + x^2}1+x21
x=1x = 1x=1是曲线y=x4−ax2y = x^4 - a x^2y=x4−ax2的拐点横坐标,则a=a =a=(). (A)0 (B)1 (C)6 (D)−6-6−6
Copyright ©