设f(x)f(x)f(x)在[0,12][0,\dfrac{1}{2}][0,21]上连续,在(0,12)(0,\dfrac{1}{2})(0,21)内可导,且f(0)=0f(0) = 0f(0)=0,f(12)=34f(\dfrac{1}{2})=\dfrac{3}{4}f(21)=43,证明至少存在一点ξ∈(0,12)\xi\in(0,\dfrac{1}{2})ξ∈(0,21),使f′(ξ)=6ξf'(\xi)=6\xif′(ξ)=6ξ.
Copyright ©