设y=f(x)y = f(x)y=f(x)由方程y2−3xy+x3=1y^{2} - 3xy + x^{3}=1y2−3xy+x3=1确定,则y′=y^\prime=y′=( ).
(A)3x2−3y2y−3x\dfrac{3x^{2} - 3y}{2y - 3x}2y−3x3x2−3y
(B)3y−3x22y−3x\dfrac{3y - 3x^{2}}{2y - 3x}2y−3x3y−3x2
(C)2y−3x3x2−3y\dfrac{2y - 3x}{3x^{2} - 3y}3x2−3y2y−3x
(D)3x−2y3x2−3y\dfrac{3x - 2y}{3x^{2} - 3y}3x2−3y3x−2y
已知函数f(x)={a⋅sinxx,x≠01,x=0f(x)=\begin{cases}\dfrac{a\cdot\sin x}{x},&x\neq 0\\1,&x = 0\end{cases}f(x)=⎩⎨⎧xa⋅sinx,1,x=0x=0若f(x)f(x)f(x)在点x=0x = 0x=0处连续,则( ).
(A)a=1a = 1a=1
(B)a=0a = 0a=0
(C)a=sin1a = \sin 1a=sin1
(D)a=−1a = -1a=−1
函数y=666x−x2y = 666x - x^{2}y=666x−x2在区间(−∞,+∞)(-\infty,+\infty)(−∞,+∞)内( ).
(A)是单调递减的
(B)图形是凹的
(C)图形是凸的
(D)是单调递增的
Copyright ©