设y=f(x)y = f(x)y=f(x)由方程y2−3xy+x3=1y^{2} - 3xy + x^{3}=1y2−3xy+x3=1确定,则y′=y^\prime=y′=( ).
(A)3x2−3y2y−3x\dfrac{3x^{2} - 3y}{2y - 3x}2y−3x3x2−3y
(B)3y−3x22y−3x\dfrac{3y - 3x^{2}}{2y - 3x}2y−3x3y−3x2
(C)2y−3x3x2−3y\dfrac{2y - 3x}{3x^{2} - 3y}3x2−3y2y−3x
(D)3x−2y3x2−3y\dfrac{3x - 2y}{3x^{2} - 3y}3x2−3y3x−2y
Copyright ©