下列各组函数相同的是(). (A)f(x)=lgx2f(x)=\lg x^{2}f(x)=lgx2与g(x)=2lgxg(x)=2\lg xg(x)=2lgx (B)f(x)=x−1x−3f(x)=\sqrt{\dfrac{x - 1}{x - 3}}f(x)=x−3x−1与g(x)=x−1x−3g(x)=\dfrac{\sqrt{x - 1}}{\sqrt{x - 3}}g(x)=x−3x−1 (C)f(x)=x4−x33f(x)=\sqrt[3]{x^{4}-x^{3}}f(x)=3x4−x3与g(x)=xx−13g(x)=x\sqrt[3]{x - 1}g(x)=x3x−1 (D)f(x)=xf(x)=xf(x)=x与g(x)=x2g(x)=\sqrt{x^{2}}g(x)=x2
下列函数为奇函数的是( ). (A)f(x)=x−x2f(x)=x - x^{2}f(x)=x−x2 (B)f(x)=x(x−1)(x+1)f(x)=x(x - 1)(x + 1)f(x)=x(x−1)(x+1) (C)f(x)=ax+a−x2f(x)=\dfrac{a^{x}+a^{-x}}{2}f(x)=2ax+a−x (D)f(x)=ex+1exf(x)=e^{x}+\dfrac{1}{e^{x}}f(x)=ex+ex1
设f(x)=2x+3x−2f(x)=2^{x}+3^{x}-2f(x)=2x+3x−2,当x→0x\to0x→0时,有( ). (A)f(x)f(x)f(x)与xxx等价无穷小 (B)f(x)f(x)f(x)与xxx同阶但非等价无穷小 (C)f(x)f(x)f(x)是比xxx高阶的无穷小 (D)f(x)f(x)f(x)是比xxx低阶的无穷小
设函数f(x)={x2x<10x=12−xx>1f(x)=\begin{cases}x^{2}&x<1\\0&x = 1\\2 - x&x>1\end{cases}f(x)=⎩⎨⎧x202−xx<1x=1x>1,则f(x)f(x)f(x)的( )间断点. (A)无穷 (B)振荡 (C)跳跃 (D)可去
若f′(x0)f^\prime(x_0)f′(x0)存在,则limh→0f(x0+h2)−f(x0+2h)h2=\lim\limits_{h\to0}\dfrac{f(x_0 + h^{2}) - f(x_0 + 2h)}{h^{2}} =h→0limh2f(x0+h2)−f(x0+2h)=( ). (A)f′(x0)−2f′(x0)f'(x_0)-2f'(x_0)f′(x0)−2f′(x0) (B)2f′(x0)2f'(x_0)2f′(x0) (C)−2f′(x0)-2f'(x_0)−2f′(x0) (D)−f′(x0)-f'(x_0)−f′(x0)
综上,答案选D。
Copyright ©