设连续函数f(x)f(x)f(x)满足f(x)=x2−∫02f(x)dxf(x) = x^2 - \int_{0}^{2}f(x)dxf(x)=x2−∫02f(x)dx,则∫02f(x)dx=\int_{0}^{2}f(x)dx =∫02f(x)dx=( ).
Copyright ©