设{x=ln(1+t)y=11+t\begin{cases}x = \ln(1 + t)\\y = \dfrac{1}{1 + t}\end{cases}⎩⎨⎧x=ln(1+t)y=1+t1,则dydx=\dfrac{dy}{dx} =dxdy=( ).
(A)1
(B)11+t\dfrac{1}{1 + t}1+t1
(C)−11+t\dfrac{-1}{1 + t}1+t−1
(D)−1(1+t)2\dfrac{-1}{(1 + t)^2}(1+t)2−1
Copyright ©