已知函数f(x),g(x)f(x),g(x)f(x),g(x)在区间[0,4][0,4][0,4]上均连续,且∫04f(x)dx=−3\int_{0}^{4}f(x)dx=-3∫04f(x)dx=−3,∫04g(x)dx=1\int_{0}^{4}g(x)dx = 1∫04g(x)dx=1,则∫04[3f(x)+2g(x)]dx=\int_{0}^{4}[3f(x)+2g(x)]dx=∫04[3f(x)+2g(x)]dx=( ).
(A)−7-7−7
(B)−5-5−5
(C)−3-3−3
(D)222
Copyright ©