设函数f(x)f(x)f(x)在x0x_0x0的某个领域内有定义,那么下列选项中哪个不是f(x)f(x)f(x)在x0x_0x0处可导的一个充分条件( )
(A)limh→+∞h[f(x0+1h)−f(x0)]\lim\limits_{h\to+\infty}h\left[f\left(x_0+\dfrac{1}{h}\right)-f(x_0)\right]h→+∞limh[f(x0+h1)−f(x0)]存在
(B)limh→0f(x0+2h)−f(x0+h)h\lim\limits_{h\to0}\dfrac{f(x_0 + 2h)-f(x_0 + h)}{h}h→0limhf(x0+2h)−f(x0+h)存在
(C)limh→0f(x0+h)−f(x0−h)2h\lim\limits_{h\to0}\dfrac{f(x_0 + h)-f(x_0 - h)}{2h}h→0lim2hf(x0+h)−f(x0−h)存在
(D)limh→0f(x0)−f(x0−h)h\lim\limits_{h\to0}\dfrac{f(x_0)-f(x_0 - h)}{h}h→0limhf(x0)−f(x0−h)存在
设f(x)=2x+3x−2f(x)=2^{x}+3^{x}-2f(x)=2x+3x−2,当x→0x\to0x→0时,有( ).
(A)f(x)f(x)f(x)与xxx等价无穷小
(B)f(x)f(x)f(x)与xxx同阶但非等价无穷小
(C)f(x)f(x)f(x)是比xxx高阶的无穷小
(D)f(x)f(x)f(x)是比xxx低阶的无穷小
下列各组函数相同的是( ).
(A)f(x)=lgx2f(x)=\lg x^{2}f(x)=lgx2与g(x)=2lgxg(x)=2\lg xg(x)=2lgx
(B)f(x)=x−1x−3f(x)=\sqrt{\dfrac{x - 1}{x - 3}}f(x)=x−3x−1与g(x)=x−1x−3g(x)=\dfrac{\sqrt{x - 1}}{\sqrt{x - 3}}g(x)=x−3x−1
(C)f(x)=x4−x33f(x)=\sqrt[3]{x^{4}-x^{3}}f(x)=3x4−x3与g(x)=xx−13g(x)=x\sqrt[3]{x - 1}g(x)=x3x−1
(D)f(x)=xf(x)=xf(x)=x与g(x)=x2g(x)=\sqrt{x^{2}}g(x)=x2
Copyright ©