当x→0x \to 0x→0时,1+x2−1\sqrt{1 + x^{2}} - 11+x2−1是arctanx3\arctan x^{3}arctanx3的( ). (A)等价无穷小 (B)同阶非等价无穷小 (C)高阶无穷小 (D)低阶无穷小
已知函数f(x)={a⋅sinxx,x≠01,x=0f(x)=\begin{cases}\dfrac{a\cdot\sin x}{x},&x\neq 0\\1,&x = 0\end{cases}f(x)=⎩⎨⎧xa⋅sinx,1,x=0x=0若f(x)f(x)f(x)在点x=0x = 0x=0处连续,则( ). (A)a=1a = 1a=1 (B)a=0a = 0a=0 (C)a=sin1a = \sin 1a=sin1 (D)a=−1a = -1a=−1
y=5−6xy = 5 - 6xy=5−6x的反函数为( ). (A)y=5−6xy = 5 - 6xy=5−6x (B)y=5+6xy = 5 + 6xy=5+6x (C)y=5−x6y = \dfrac{5 - x}{6}y=65−x (D)y=5+x6y = \dfrac{5 + x}{6}y=65+x
设函数f(x)f(x)f(x)在x=2x = 2x=2处可导,且limx→0f(2+x)−f(2)2x=2\lim\limits_{x \to 0}\dfrac{f(2 + x) - f(2)}{2x}=2x→0lim2xf(2+x)−f(2)=2,则f′(2)=f^\prime(2)=f′(2)=( ). (A)222 (B)111 (C)444 (D)−2-2−2
设y=f(x)y = f(x)y=f(x)由方程y2−3xy+x3=1y^{2} - 3xy + x^{3}=1y2−3xy+x3=1确定,则y′=y^\prime=y′=( ). (A)3x2−3y2y−3x\dfrac{3x^{2} - 3y}{2y - 3x}2y−3x3x2−3y (B)3y−3x22y−3x\dfrac{3y - 3x^{2}}{2y - 3x}2y−3x3y−3x2 (C)2y−3x3x2−3y\dfrac{2y - 3x}{3x^{2} - 3y}3x2−3y2y−3x (D)3x−2y3x2−3y\dfrac{3x - 2y}{3x^{2} - 3y}3x2−3y3x−2y
Copyright ©