设由方程exy−xy2=e2e^{xy}-xy^{2}=e^{2}exy−xy2=e2确定的函数为y=y(x)y = y(x)y=y(x),求dydx∣x=0\left.\dfrac{dy}{dx}\right|_{x = 0}dxdyx=0.
设F(x)=∫0x5tdtF(x)=\int_{0}^{x}5^{t}dtF(x)=∫0x5tdt,则F′(x)=F'(x) =F′(x)=( ).
已知∫f(x)dx=e2x+C\int f(x)dx = e^{2x}+C∫f(x)dx=e2x+C,∫g(x)dx=2x+C\int g(x)dx=\sqrt{2x}+C∫g(x)dx=2x+C,则∫[f(x)+g(x)]dx=\int [f(x)+g(x)]dx =∫[f(x)+g(x)]dx=( ).
Copyright ©