求曲线y=tanx+2exy = \tan x+ 2e^{x}y=tanx+2ex在点(0,2)(0,2)(0,2)处的法线方程.
设f(x)=x3+3xlimx→1f(x)f(x) = x^3 + 3x\lim\limits_{x \to 1} f(x)f(x)=x3+3xx→1limf(x),且limx→1f(x)\lim\limits_{x \to 1} f(x)x→1limf(x)存在,求f(x)f(x)f(x).
求极限limx→+∞ln(1+2x)ex−1\lim\limits_{x \to +\infty} \dfrac{\ln(1 + 2x)}{e^x - 1}x→+∞limex−1ln(1+2x).
Copyright ©