设f(x)=x3+3xlimx→1f(x)f(x) = x^3 + 3x\lim\limits_{x \to 1} f(x)f(x)=x3+3xx→1limf(x),且limx→1f(x)\lim\limits_{x \to 1} f(x)x→1limf(x)存在,求f(x)f(x)f(x).
ddx∫0x2costdt(x>0)=\dfrac{d}{dx} \int_{0}^{x^2} \cos\sqrt{t}dt (x > 0) =dxd∫0x2costdt(x>0)=______.
求极限limx→+∞ln(1+2x)ex−1\lim\limits_{x \to +\infty} \dfrac{\ln(1 + 2x)}{e^x - 1}x→+∞limex−1ln(1+2x).
Copyright ©