设f(x)f(x)f(x)在[0,12][0,\dfrac{1}{2}][0,21]上连续,在(0,12)(0,\dfrac{1}{2})(0,21)内可导,且f(0)=0f(0) = 0f(0)=0,f(12)=34f(\dfrac{1}{2})=\dfrac{3}{4}f(21)=43,证明至少存在一点ξ∈(0,12)\xi\in(0,\dfrac{1}{2})ξ∈(0,21),使f′(ξ)=6ξf'(\xi)=6\xif′(ξ)=6ξ.
设参数方程为{x=1+sin2θy=2sinθ+3\begin{cases}x = 1+\sin2\theta\\y = 2\sin\theta + 3\end{cases}{x=1+sin2θy=2sinθ+3,θ\thetaθ为参数,求dydx∣θ=0\left.\dfrac{dy}{dx}\right|_{\theta = 0}dxdyθ=0.
极限limx→∞(1+1x)3x+1=\lim\limits_{x \to \infty} (1 + \dfrac{1}{x})^{3x + 1} =x→∞lim(1+x1)3x+1=______.
Copyright ©