求极限limx→+∞ln(1+2x)ex−1\lim\limits_{x \to +\infty} \dfrac{\ln(1 + 2x)}{e^x - 1}x→+∞limex−1ln(1+2x).
设参数方程为{x=1+sin2θy=2sinθ+3\begin{cases}x = 1+\sin2\theta\\y = 2\sin\theta + 3\end{cases}{x=1+sin2θy=2sinθ+3,θ\thetaθ为参数,求dydx∣θ=0\left.\dfrac{dy}{dx}\right|_{\theta = 0}dxdyθ=0.
设f(x)=x3+3xlimx→1f(x)f(x) = x^3 + 3x\lim\limits_{x \to 1} f(x)f(x)=x3+3xx→1limf(x),且limx→1f(x)\lim\limits_{x \to 1} f(x)x→1limf(x)存在,求f(x)f(x)f(x).
Copyright ©