求曲线y=tanx+2exy = \tan x+ 2e^{x}y=tanx+2ex在点(0,2)(0,2)(0,2)处的法线方程.
已知方程y=xy3+exy = xy^{3}+e^{x}y=xy3+ex所确定的函数为y=y(x)y = y(x)y=y(x),求dydydy.
设参数方程为{x=1+sin2θy=2sinθ+3\begin{cases}x = 1+\sin2\theta\\y = 2\sin\theta + 3\end{cases}{x=1+sin2θy=2sinθ+3,θ\thetaθ为参数,求dydx∣θ=0\left.\dfrac{dy}{dx}\right|_{\theta = 0}dxdyθ=0.
Copyright ©