设连续函数f(x)f(x)f(x)满足f(x)=x2−∫02f(x)dxf(x) = x^2 - \int_{0}^{2}f(x)dxf(x)=x2−∫02f(x)dx,则∫02f(x)dx=\int_{0}^{2}f(x)dx =∫02f(x)dx=( ).
不定积分∫x3xdx=\int \dfrac{x^3}{x}dx =∫xx3dx=( ).
求极限limx→0x(1−cosx)1+x3−1\lim\limits_{x \to 0} \dfrac{x(1 - \cos x)}{\sqrt{1 + x^3}-1}x→0lim1+x3−1x(1−cosx).
Copyright ©