已知函数f(x)f(x)f(x)在[0,1][0,1][0,1]上连续,当x∈(0,1)x \in (0,1)x∈(0,1)时有f′(x)>0f'(x) > 0f′(x)>0,则函数f(x)f(x)f(x)在区间(0,1)(0,1)(0,1)内(填“单调递增”或“单调递减”).
求函数y=∣x−3∣3−xy = \dfrac{|x - 3|}{3 - x}y=3−x∣x−3∣在x=3x = 3x=3处的极限.
设连续函数f(x)f(x)f(x)满足f(x)=x2−∫02f(x)dxf(x) = x^2 - \int_{0}^{2}f(x)dxf(x)=x2−∫02f(x)dx,则∫02f(x)dx=\int_{0}^{2}f(x)dx =∫02f(x)dx=( ).
Copyright ©