设函数y=f(x)y = f(x)y=f(x)在点x=x0x = x_0x=x0处可导,且x=x0x = x_0x=x0为极值点,则f′(x0)=f'(x_0) =f′(x0)=( ).
(A)-1
(B)0
(C)1
(D)2
求极限limx→+∞lnxe−x−ex\lim\limits_{x \to +\infty} \dfrac{\ln x}{e^{-x} - e^x}x→+∞lime−x−exlnx.
函数y=2x+1y = 2x + 1y=2x+1的反函数为y=y =y=( ).
Copyright ©