求由方程xy=ex+yxy = e^{x + y}xy=ex+y所确定的隐函数x=x(y)x = x(y)x=x(y)的导数dxdy\dfrac{dx}{dy}dydx.
设连续函数f(x)f(x)f(x)满足f(x)=x2−∫02f(x)dxf(x) = x^2 - \int_{0}^{2}f(x)dxf(x)=x2−∫02f(x)dx,则∫02f(x)dx=\int_{0}^{2}f(x)dx =∫02f(x)dx=( ).
不定积分∫x3xdx=\int \dfrac{x^3}{x}dx =∫xx3dx=( ).
Copyright ©