求极限limx→1x4−3x2+2x4+2x5−5x3+3\lim\limits_{x \to 1} \dfrac{x^4 - 3x^2 + 2}{x^4 + 2x^5 - 5x^3 + 3}x→1limx4+2x5−5x3+3x4−3x2+2.
d(sin2x)d(2x)=\dfrac{d(\sin2x)}{d(2x)} =d(2x)d(sin2x)=( ).
设连续函数f(x)f(x)f(x)满足f(x)=x2−∫02f(x)dxf(x) = x^2 - \int_{0}^{2}f(x)dxf(x)=x2−∫02f(x)dx,则∫02f(x)dx=\int_{0}^{2}f(x)dx =∫02f(x)dx=( ).
Copyright ©