已知f(x)={x−a,x<1lnx,x≥1f(x)=\begin{cases}x - a, & x < 1 \\\ln x, & x \geq 1\end{cases}f(x)={x−a,lnx,x<1x≥1,若函数f(x)f(x)f(x)在x=1x = 1x=1处连续,求aaa的值.
求极限limx→∞(1+12+x)2x\lim\limits_{x \to \infty} (1 + \dfrac{1}{2 + x})^{2x}x→∞lim(1+2+x1)2x.
已知函数f(x)f(x)f(x)为可导函数,且f(x)≠0f(x) \neq 0f(x)=0,求函数y=f(x)y = \sqrt{f(x)}y=f(x)的导数.
Copyright ©