求极限limx→∞(1+12+x)2x\lim\limits_{x \to \infty} (1 + \dfrac{1}{2 + x})^{2x}x→∞lim(1+2+x1)2x.
已知函数f(x)f(x)f(x)为可导函数,且f(x)≠0f(x) \neq 0f(x)=0,求函数y=f(x)y = \sqrt{f(x)}y=f(x)的导数.
求极限limx→1x4−3x2+2x4+2x5−5x3+3\lim\limits_{x \to 1} \dfrac{x^4 - 3x^2 + 2}{x^4 + 2x^5 - 5x^3 + 3}x→1limx4+2x5−5x3+3x4−3x2+2.
Copyright ©