求极限limx→1x4−3x2+2x4+2x5−5x3+3\lim\limits_{x \to 1} \dfrac{x^4 - 3x^2 + 2}{x^4 + 2x^5 - 5x^3 + 3}x→1limx4+2x5−5x3+3x4−3x2+2.
已知f(x)={x−a,x<1lnx,x≥1f(x)=\begin{cases}x - a, & x < 1 \\\ln x, & x \geq 1\end{cases}f(x)={x−a,lnx,x<1x≥1,若函数f(x)f(x)f(x)在x=1x = 1x=1处连续,求aaa的值.
已知y=x2+2x−3y = x^2+2x - 3y=x2+2x−3在某点处的切线斜率为6,则该点坐标为( ).
Copyright ©