已知函数f(x)f(x)f(x)在(−δ,δ)(-\delta,\delta)(−δ,δ)内连续,当x∈(−δ,0)x \in (-\delta,0)x∈(−δ,0)时,f′(x)>0f'(x)>0f′(x)>0;当x∈(0,δ)x \in (0,\delta)x∈(0,δ)时,f′(x)<0f'(x)<0f′(x)<0,则在(−δ,δ)(-\delta,\delta)(−δ,δ)内( ).
(A)f(0)f(0)f(0)是极小值
(B)f(0)f(0)f(0)是极大值
(C)f(0)f(0)f(0)不是极值
(D)f(0)f(0)f(0)是最小值
曲线y=sinxy = \sin xy=sinx在[−π2,π2][-\dfrac{\pi}{2},\dfrac{\pi}{2}][−2π,2π]上的拐点是( ).
设F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数,则∫e−xf(e−x)dx=\int e^{-x}f(e^{-x})dx =∫e−xf(e−x)dx=( ).
Copyright ©