已知f(x)={x−a,x<1lnx,x≥1f(x)=\begin{cases}x - a, & x < 1 \\\ln x, & x \geq 1\end{cases}f(x)={x−a,lnx,x<1x≥1,若函数f(x)f(x)f(x)在x=1x = 1x=1处连续,求aaa的值.
已知DDD是抛物线L:y2=2xL:y^{2}=2xL:y2=2x和直线x=12x = \dfrac{1}{2}x=21所围成的平面图形,试求DDD绕xxx轴旋转一周所形成的旋转体的体积.
函数y=2x2−lnxy = 2x^2 - \ln xy=2x2−lnx的单调递减区间为( ).
(A)(0,12](0,\dfrac{1}{2}](0,21]
(B)(−∞,12](-\infty,\dfrac{1}{2}](−∞,21]
(C)[12,+∞)[\dfrac{1}{2},+\infty)[21,+∞)
(D)[−12,12][-\dfrac{1}{2},\dfrac{1}{2}][−21,21]
Copyright ©