求极限limx→1x4−3x2+2x4+2x5−5x3+3\lim\limits_{x \to 1} \dfrac{x^4 - 3x^2 + 2}{x^4 + 2x^5 - 5x^3 + 3}x→1limx4+2x5−5x3+3x4−3x2+2.
若f(x)f(x)f(x)的定义域为[0,1][0,1][0,1],则f(3x)f(3x)f(3x)的定义域是( ).
(A)[0,1][0,1][0,1]
(B)[0,3][0,3][0,3]
(C)[0,13][0,\dfrac{1}{3}][0,31]
(D)(0,1)(0,1)(0,1)
已知y=x2+2x−3y = x^2+2x - 3y=x2+2x−3在某点处的切线斜率为6,则该点坐标为( ).
Copyright ©