设f(x)={a+x2,x≤01xsin1x,x>0f(x)=\begin{cases}a + x^{2},&x\leq0\\\dfrac{1}{x}\sin\dfrac{1}{x},&x > 0\end{cases}f(x)=⎩⎨⎧a+x2,x1sinx1,x≤0x>0在x=0x = 0x=0处连续,求aaa的值.
求不定积分∫x2cosxdx\int x^{2}\cos xdx∫x2cosxdx.
求定积分∫01x1+x2dx\int_{0}^{1}\dfrac{x}{\sqrt{1 + x^{2}}}dx∫011+x2xdx.
Copyright ©