设由方程exy−xy2=e2e^{xy}-xy^{2}=e^{2}exy−xy2=e2确定的函数为y=y(x)y = y(x)y=y(x),求dydx∣x=0\left.\dfrac{dy}{dx}\right|_{x = 0}dxdyx=0.
设f(x)f(x)f(x)在点x=1x = 1x=1处连续,且limx→1f(x)=2\lim\limits_{x \to 1}f(x)=2x→1limf(x)=2,则f(1)=f(1) =f(1)=( ).
(A)111
(B)222
(C)333
(D)−2-2−2
limx→+∞(x+2−x−3)\lim\limits_{x \to +\infty}(\sqrt{x + 2}-\sqrt{x - 3})x→+∞lim(x+2−x−3).
Copyright ©