由曲线y=x2y = x^{2}y=x2与y=xy = \sqrt{x}y=x的边界所围成区域的面积为( ).
求极限:limx→31+x−2sin(x−3)\lim\limits_{x\to 3}\dfrac{\sqrt{1 + x}-2}{\sin(x - 3)}x→3limsin(x−3)1+x−2.
定积分等于零的是( )
(A)∫−11dx\int_{-1}^{1}dx∫−11dx
(B)∫−11(x+4−x2)2dx\int_{-1}^{1}(x+\sqrt{4 - x^{2}})^{2}dx∫−11(x+4−x2)2dx
(C)∫−11xsinxdx\int_{-1}^{1}x\sin xdx∫−11xsinxdx
(D)∫−112x1+x2dx\int_{-1}^{1}\dfrac{2x}{1 + x^{2}}dx∫−111+x22xdx
Copyright ©