若函数f(x)=x+1xf(x)=x+\dfrac{1}{x}f(x)=x+x1,则∫1ef(x)dx\int_{1}^{e}f(x)dx∫1ef(x)dx=( ).
若∫eb2xdx=6\int_{e}^{b}\dfrac{2}{x}dx = 6∫ebx2dx=6,则bbb=( ).
limn→∞[11⋅2+12⋅3+⋯+1n(n+1)]\lim\limits_{n\to\infty}\left[\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\cdots+\dfrac{1}{n(n + 1)}\right]n→∞lim[1⋅21+2⋅31+⋯+n(n+1)1]=( ).
Copyright ©