设函数f(x)f(x)f(x)可微,则当Δx→0\Delta x \to 0Δx→0时,Δy−dy\Delta y - dyΔy−dy与Δx\Delta xΔx相比是( ).
(A)等价无穷小
(B)同阶非等价无穷小
(C)低阶无穷小
(D)高阶无穷小
求极限:limx→0x2−13x2−x−2\lim\limits_{x\to 0}\dfrac{x^{2}-1}{3x^{2}-x - 2}x→0lim3x2−x−2x2−1.
已知函数f(x)f(x)f(x)在点x=0x = 0x=0处连续,且当x≠0x\neq 0x=0时,函数f(x)=2−1x2f(x)=2^{-\dfrac{1}{x^{2}}}f(x)=2−x21,则函数值f(0)f(0)f(0)=( ).
Copyright ©