由直线y=12,y=2y = \dfrac{1}{2},y = 2y=21,y=2,曲线y=1xy = \dfrac{1}{x}y=x1及yyy轴所围成的封闭图形的面积是( ).
(A)2ln22\ln 22ln2
(B)2ln2−12\ln 2 - 12ln2−1
(C)12ln2\dfrac{1}{2}\ln 221ln2
(D)54\dfrac{5}{4}45
若∫eb2xdx=6\int_{e}^{b}\dfrac{2}{x}dx = 6∫ebx2dx=6,则bbb=( ).
已知函数f(x)f(x)f(x)在点x=0x = 0x=0处连续,且当x≠0x\neq 0x=0时,函数f(x)=2−1x2f(x)=2^{-\dfrac{1}{x^{2}}}f(x)=2−x21,则函数值f(0)f(0)f(0)=( ).
Copyright ©