求极限:limx→∞(2x+32x+1)x+1\lim\limits_{x\to\infty}(\dfrac{2x + 3}{2x + 1})^{x + 1}x→∞lim(2x+12x+3)x+1.
已知极限limx→∞(x2+2x+ax)=0\lim\limits_{x \to \infty}(\dfrac{x^2 + 2}{x}+ax)=0x→∞lim(xx2+2+ax)=0,则常数aaa等于( ).
(A)−1-1−1
(B)000
(C)111
(D)222
已知函数f(x)f(x)f(x)在点x=0x = 0x=0处连续,且当x≠0x\neq 0x=0时,函数f(x)=2−1x2f(x)=2^{-\dfrac{1}{x^{2}}}f(x)=2−x21,则函数值f(0)f(0)f(0)=( ).
Copyright ©