已知函数f(x)f(x)f(x)在点x=0x = 0x=0处连续,且当x≠0x\neq 0x=0时,函数f(x)=2−1x2f(x)=2^{-\dfrac{1}{x^{2}}}f(x)=2−x21,则函数值f(0)f(0)f(0)=( ).
由两条曲线y=x2y = x^{2}y=x2,y=14x2y=\dfrac{1}{4}x^{2}y=41x2与直线y=1y = 1y=1围成平面区域的面积是( ).
求极限:limx→01+xsinx−1ex2−1\lim\limits_{x\to 0}\dfrac{\sqrt{1 + x\sin x}-1}{e^{x^{2}}-1}x→0limex2−11+xsinx−1.
Copyright ©