已知函数f(x)f(x)f(x)在点x=0x = 0x=0处连续,且当x≠0x\neq 0x=0时,函数f(x)=2−1x2f(x)=2^{-\dfrac{1}{x^{2}}}f(x)=2−x21,则函数值f(0)f(0)f(0)=( ).
limn→∞[11⋅2+12⋅3+⋯+1n(n+1)]\lim\limits_{n\to\infty}\left[\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\cdots+\dfrac{1}{n(n + 1)}\right]n→∞lim[1⋅21+2⋅31+⋯+n(n+1)1]=( ).
计算定积分∫024−x2dx\int_{0}^{2}\sqrt{4 - x^{2}}dx∫024−x2dx=( ).
Copyright ©