设f(x)={x,−1≤x≤0x2,0<x≤1f(x)=\begin{cases}x, -1\leq x\leq 0\\x^{2}, 0< x\leq 1\end{cases}f(x)={x,−1≤x≤0x2,0<x≤1,求定积分∫−11f(x)dx\int_{-1}^{1}f(x)dx∫−11f(x)dx.
设函数f(x)f(x)f(x)在闭区间[0,1][0,1][0,1]上连续,在(0,1)(0,1)(0,1)内可导,且f(0)=0f(0)=0f(0)=0,f(1)=2f(1)=2f(1)=2,证明在(0,1)(0,1)(0,1)内至少存在一点ξ\xiξ,使得f′(ξ)=2ξ+1f'(\xi)=2\xi + 1f′(ξ)=2ξ+1成立.
求不定积分:∫sinx2dx\int\sin\dfrac{x}{2}dx∫sin2xdx.
Copyright ©