求曲线{y=sintx=t2\begin{cases}y = \sin t\\x = t^{2}\end{cases}{y=sintx=t2(ttt为参数)在t=π3t = \dfrac{\pi}{3}t=3π对应点处的切线方程.
求不定积分:∫sinx2dx\int\sin\dfrac{x}{2}dx∫sin2xdx.
若f(x)=sinx+x666f(x)=\sin x + x^{666}f(x)=sinx+x666,求f(888)(x)f^{(888)}(x)f(888)(x).
Copyright ©