求曲线{y=sintx=t2\begin{cases}y = \sin t\\x = t^{2}\end{cases}{y=sintx=t2(ttt为参数)在t=π3t = \dfrac{\pi}{3}t=3π对应点处的切线方程.
设f(x)={x,−1≤x≤0x2,0<x≤1f(x)=\begin{cases}x, -1\leq x\leq 0\\x^{2}, 0< x\leq 1\end{cases}f(x)={x,−1≤x≤0x2,0<x≤1,求定积分∫−11f(x)dx\int_{-1}^{1}f(x)dx∫−11f(x)dx.
设曲线x=y+1x = \sqrt{y + 1}x=y+1,直线y=0y = 0y=0,x=2x = 2x=2围成一平面图形AAA,求该平面图形绕yyy轴旋转一周所得旋转体的体积VVV.
Copyright ©